Year 5 Learning and Progression Steps for Mathematics

What are Learning and Progression Steps (LAPS)?

The Learning and Progression Steps are designed to scaffold the learning required in order to meet the expectations of the National Curriculum. Statements in the Lancashire Key Learning for Mathematics document have been broken down into smaller steps to support teachers in planning appropriate learning opportunities. These key pieces of learning will support pupils in becoming fluent in the knowledge and skills of the curriculum and ensure that the learning is effective and sustained.

The number of steps is dependent on the learning and do not constitute expectations for the end of each term
The colour coding is an approximate indicator of end of term expectations
Orange (including the end of previous year expectation) are the steps in learning for the autumn term.
Green are the steps in learning for the spring term.
Yellow are the steps in learning for the summer term and incorporate the end of year expectations.
The colours correspond with the structure of the Lancashire Mathematics Curriculum and reflect how often each learning objective is explicitly taught across the year. Some key learning objectives are not taught in every term, and in some cases not in the summer term. This means that end of year expectations may need to be met before the end of the summer term

The final step in the progression for each strand of learning is the end of year expectation
The steps are not of equal size and different amounts of time may be required for children to move between individual steps. For example,

Some learning within the same end of year expectation has been split and designed to run concurrently alongside each other. For example,

	Read multiples of 1000 to 10000 in numerals and in words	Read multiples of 100 to 10000 in numerals and in words	Read numbers to 10000 where 0 is not used as a place holder	Read numbers to 10000 where 0 is used as a place holder	Read and write numbers to at least 10000
and in words	Write multiples of 1000 to 10000 in numerals and in words	Write multiples of 100 to 10000 in numerals and in words	Write numbers to 10000 where 0 is not used as a place holder	Write numbers to 10000 where 0 is used as a place holder	

Some LAPS may need to be completed before another can be started.

Where have they come from?

The Learning and Progression Steps (LAPS) have been derived from the Lancashire Key Learning in Mathematics statements, identified primarily from the National Curriculum 2014 programmes of study.

How are they different from the Key Learning Statements?

The Learning and Progression Steps (LAPS) are smaller, progressive steps which support learning towards the Key Learning in Mathematics expectations.

How are they different from the Key Learning Indicators of Performance (KLIPs)?

The Key Learning Indicators of Performance (KLIPs) document is an assessment tool. The Learning and Progression Steps (LAPS) document is a planning tool and is not intended to be used for summative assessment purposes. However, they may support teachers in judging whether children are on track to meet the end of year expectations at different points throughout the year.

The terms 'entering', 'developing' and 'secure' are used in Lancashire's assessment approach, KLIPs, as summative judgements in relation to age related expectations. Definitions for these terms can be found in the introduction to the KLIPs document.

How might Learning and Progression Steps (LAPS) in Mathematics be useful?

Learning and Progression Steps (LAPS) may be used in a number of ways. For whole class teaching, LAPS may be used to support differentiation. When planning, it may be appropriate to use LAPS statements to inform learning objectives for a session or number of sessions. Learning and Progression Steps (LAPS) in Mathematics should be selected according to the learning needs of the individual or group. Emphasis however, should always be on developing breadth and depth of learning to ensure skills, knowledge and understanding are sufficiently embedded before moving on.
The LAPS should not be used as an assessment tool, but they can inform teachers about children's progress towards the end of year expectations at the end of each term.

Are LAPS consistent with the other resources from the Lancashire Mathematics Team?

Yes, the LAPS are related to the content of the Mathematics Planning Support Disc and also the Progression Towards Written Calculation Policies and the Progression in Mental Calculation Strategies.
These can be found on the website:
www.lancsngfl.ac.uk/curriculum/primarymaths

Key Learning in Mathematics - Year 5

Number - number and place value

- Count forwards or backwards in steps of powers of 10 for any given number up to $1,000,000$
- Count forwards and backwards in decimal steps
- Read, write, order and compare numbers to 1,000,000 and determine the value of each digit
- Read, write, order and compare numbers with up to 3 decimal places
- Identify the value of each digit to three decimal places
- Identify represent and estimate numbers using the number line
- Find $0.01,0.1,1,10,100,100$ and other powers of 10 more or less than a given number
- Round any number up to $1,000,000$ to the nearest $10,100,1000$, 10,000 and 100,000
- Round decimals with two decimal places to the nearest whole number and to one decimal place
- Multiply/divide whole numbers and decimals by 10, 100 and 1,000
- Interpret negative numbers in context, count on and back with positive and negative whole numbers, including through zero
- Describe and extend number sequences including those with doubling/halving or multiplying/dividing by 10 and where the step size is a decimal
- Read Roman numerals to $1,000(\mathrm{M})$; recognise years written as such
- Solve number and practical problems that involve all of the above

Number - fractions, decimals and percentages

- Recognise mixed numbers and improper fractions and convert from one form to the other
- Read and write decimal numbers as fractions (e.g. $0.71=\frac{71}{100}$)
- Compare and order fractions whose denominators are all multiples of the same number (including on a number line)
- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- Recognise and use thousandths and relate them to tenths hundredths and decimal equivalents
- Add and subtract fractions with denominators that are the same and that are multiples of the same number (using diagrams)
- Write statements > 1 as a mixed number (e.g. $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}$)
- Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal
- Solve problems involving fractions and decimals to three places
- Solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2^{\prime}}, \frac{1}{4} \frac{1}{4^{\prime}} \frac{2}{5}, \frac{4}{5}$, 5 and fractions with a denominator of a multiple of 10 or 25

Number - addition and subtraction

- Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)
- Select a mental strategy appropriate for the numbers involved in the calculation
- Recall and use addition and subtraction facts for 1 and 10 (with decimal numbers to one decimal place)
- Derive and use addition and subtraction facts for 1 (with decimal numbers to two decimal places)
- Add and subtract numbers mentally with increasingly large numbers and decimals to two decimal places
- Add and subtract whole numbers with more than 4 digits and decimals with two decimal places, including using formal written methods (columnar addition and subtraction)
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition and subtraction multi-step problems in contexts deciding which operations and methods to use and why
- Solve addition and subtraction problems involving missing numbers

Geometry - properties of shapes

- Distinguish between regular and irregular polygons based on reasoning about equal sides and angles
- Use the properties of rectangles to deduce related facts and find missing lengths and angles
- Identify 3-D shapes from 2-D representations
- Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles
- Draw given angles, and measure them in degrees (${ }^{\circ}$)
- Identify:
- angles at a point and one whole turn (total 360°)
- angles at a point on a straight line and half a turn (total 180°) - other multiples of 90°

Geometry - position and direction

- Describe positions on the first quadrant of a coordinate grid
- Plot specified points and complete shapes
- Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Statistics

- Complete and interpret information in a variety of sorting diagrams (including those used to sort properties of numbers and shapes)
- Complete, read and interpret information in tables and timetables
- Solve comparison, sum and difference problems using information presented in all types of graph including a line graph Calculate and interpret the mode median and range

Number - multiplication and division

- Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- Establish whether a number up to 100 is prime and recall prime numbers up to 19
- Recognise and use square (${ }^{2}$) and cube ${ }^{(3)}$) numbers, and notation
- Use partitioning to double or halve any number, including decimals to two decimal places
- Multiply and divide numbers mentally drawing upon known facts
- Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Use estimation/inverse to check answers to calculations; determine, in the context of a problem, an appropriate degree of accuracy
- Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates

Measurement

- Use, read and write standard units of length and mass
- Estimate (and calculate) volume ((e.g., using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)) and capacity (e.g. using water)
- Understand the difference between liquid volume and solid volume
- Continue to order temperatures including those below $0^{\circ} \mathrm{C}$
- Convert between different units of metric measure
- Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints
- Measure/calculate the perimeter of composite rectilinear shapes
- Calculate and compare the area of rectangle, use standard units square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes
- Continue to read, write and convert time between analogue and digital 12 and 24 -hour clocks
- Solve problems involving converting between units of time
- Use all four operations to solve problems involving measure using decimal notation, including scaling

These Learning and Progression Statements (LAPS) are designed to show the necessary steps in learning to make effective and sustainable progress within a single year. They begin with the 'end of year' expectation from the previous year and build up to the 'end of year expectation' of the current year.
The number of steps is dependent on the learning and do not constitute expectations for the end of each term.
The steps are not of equal size and different amounts of time may be required for children to move between individual steps.

 large positive numbers

Read Roman numerals using the symbols I, V, X, L, C, D, M where subtracting of the symbols (e.g. a lower value symbol in front of a higher value one such as IX, CM) is not required

Read Roman numerals using the symbols I, V, X, L, C, D, M in any order

Read Roman numerals to written as such

Solve number and practical problems that involve all of the above

	End of Year 4 expectation	Learning and Progression Statements				End of Year 5 expectation
	Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)	Children need frequent opportunities to select appropriate strategies from the range they have learnt. The most efficient strategy may differ between children as it will be based on their confidence and competence.				Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)
	These steps fit the Lancashire Progression Towards Written Calculation Policies and Progression in Mental Calculations Policies					
	Select a mental strategy appropriate for the numbers involved in the calculation	Recognise that the numbers in addition calculations can be reordered to make calculating more efficient e.g. $1.7+2.8+0.3$ becomes $1.7+0.3+2.8$ or $58+47-38$ becomes $58-38+47$ and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings)	Recognise and so known or rel	ations that involve $\text { s e.g. } 1.2+0.8$	Recognise calculations that require counting on or back mentally, bridging through a multiple of 10 efficiently e.g. $230-72$ becomes $230-30-40-2$ and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings)	Select a mental strategy appropriate for the numbers involved in the calculation
			Recognise calculat or back mentally, brid 10 efficiently $1,995+5+27$ and use this str (This could be supp	require counting on hrough a multiple of +278 becomes -128 becomes 25 ere appropriate pictures or jottings)	Recognise calculations that require counting on mentally to find the difference e.g. 5,003-1,960 (counting efficiently between the two numbers) and use this strategy where appropriate (This could be supported by a number line)	
			Recognise calcul partitioning 424-250 wher (This could be	at require mental $00+1,400 \text { or }$ his strategy oriate ed by jottings)	Recognise calculations that require a mental compensation method e.g. $325+298$ becomes $325+300-2$ and use this strategy where appropriate (This could be supported by pictures or jottings)	
	Recall and use addition and subtraction facts for 100 Recall and use +/- facts for multiples of 100 totalling 1,000	Recall and use addition and subtraction facts for 1 (with decimal numbers to one decimal place)		Recall and use addition and subtraction facts for 10 (with decimal numbers to one decimal place)		Recall and use addition and subtraction facts for 1 and 10 (with decimal numbers to one decimal place)
	Derive and use addition and subtraction facts for 1 and 10 (with decimal numbers to one decimal place)	Use practical apparatus (e.g. place value counters, a 10 by 10 grid, a 100 bead string) and known facts (e.g. $42+58=100$) to create addition and subtraction facts for 1 with decimal numbers to two decimal places (e.g. $0.42+0.58=1$)	Create generalisations based on addition and subtraction facts for 1 (e.g. the hundredths digits sum to 0.1 and the tenths digits sum to 0.9 and these add to give a total of 1)		Derive and use addition and subtraction facts for 1 (with decimal numbers to two decimal places)	Derive and use addition and subtraction facts for 1 (with decimal numbers to two decimal places)

Add and subtract mentally combinations of two and three digit numbers and decimals to one decimal place	Add and subtract a four-digit number to/from another four-digit number where no boundaries are crossed e.g. $5,124+1,352$		Add and subtract increasingly large numbers using appropriate mental strategies e.g. $147,654-147,632$ or $2,854+1,400$		Add and subtract numbers mentally with increasingly large numbers and decimals to two decimal places
	Add and subtract a number with two decimal places to/from a whole number, e.g. $4.32+4$	Add and subtract a nu places to/from anot boundary is not cro	with two decimal where the tenths e.g. $5.45-2.33$	Add and subtract a number with up to two decimal places to/from another where only one boundary is crossed, e.g. $14.68+3.8$ or $6.32-3.5$ (This could be supported by jottings or a number line)	
Add and subtract numbers with up to 4 digits and decimals with one decimal place using the formal written methods of columnar addition and subtraction where appropriate	Add whole numbers with more than 4 digits including combinations of numbers with different amounts of digits e.g. $4,689+67,302+785=$	Add decimals with two decimal places, e.g. $53.67+26.54=$		Add decimals with up to two decimal places, $\text { e.g. } 154.7+68.56=$	Add and subtract whole numbers with more than 4 digits and decimals with up to two decimal places, including using formal written methods (columnar addition and subtraction)
	Subtract whole numbers with more than 4 digits including pairs of numbers with different amounts of digits, e.g. 54,368-9,279	Subtract decimals with two decimal places, e.g. 206.04-72.36		Subtract decimals with up to two decimal places including pairs of numbers with different amounts of digits, e.g. 245.3-72.64	
Estimate; use inverse operations to check answers to a calculation	Round whole numbers within a calculation to a 10 e.g. $45,267+8,214+210$ becomes 45,	ppropriate power of $0+8,000+200$	Round decimals w appropriate pow	two decimal places within a calculation to an of 10 e.g. $267.62+34.78$ rounds to $270+30$	Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	Children need frequent access to a range of contexts using the content from all of the above.				Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
Solve addition and subtraction problems involving missing numbers	Represent and solve a problem using structured pictorial representations such as the bar model				Solve addition and subtraction problems involving missing numbers

Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, division (including interpreting remainders), integer scaling problems and harder correspondence problems such as \mathbf{n} objects are connected to m objects	Represent and solve a problem using structured pictorial representations such as the bar model.	Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, division (including interpreting remainders), integer scaling problems and harder correspondence problems such as \mathbf{n} objects are connected to	Represent and solve a problem using structured pictorial representations such as the bar model.	Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates

	End of Year 4 expectation	Learning and Progression Statements				End of Year 5 expectation
	No equivalent objective in Y 4	Recognise a mixed number with a fractional part in halves, thirds or quarters and convert it to an improper fraction and vice-versa		Recognise a mixed number and convert it to an improper fraction and vice-versa		Recognise mixed numbers and improper fractions and convert from one form to the other
	Recognise and write decimal equivalents of any number of tenths or hundredths	Read and write decimal numbers as fractions in tenths or hundredths,$\text { e.g. } 0.9=\frac{9}{10}, 0.71=\frac{71}{100}$		Read and write decimal numbers as fractions,$\text { e.g. } 0.8=\frac{8}{10}=\frac{4}{5}, 0.85=\frac{85}{100}=\frac{17}{20}$		Read and write decimal numbers as fractions $\left(\text { e.g. } 0.71=\frac{71}{100}\right. \text {) }$
	Compare and order unit fractions and fractions with the same denominators (including on a number line)	Compare two fractions where the denominator of one fraction is a multiple of the denominator of the other fraction, e.g. compare $\frac{2}{3}$ and $\frac{7}{9}$	Compare two fractions whose denominators are both multiples of the same number, e.g. compare $\frac{24}{32}$ and $\frac{35}{56}$ (only where the numerator allows a conversion to the common denominator)		Order more than two fractions whose denominators are all multiples of the same number (only where the numerator allows a conversion to the common denominator)	Compare and order fractions whose denominators are all multiples of the same number (including on a number line)
	Recognise and show, using diagrams, families of common equivalent fractions	Identify, name and write equivalent fractions of a given fraction by using multiplication and division facts, e.g. $\frac{5}{7}=\frac{40}{56}$		Identify, name and write equivalent fractions for tenths and hundredths, e.g. $\frac{85}{100}=\frac{17}{20}$		Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
	Recognise and write decimal equivalents of any number of tenths or hundredths Recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$	Recognise and use thousandths, e.g. $\frac{3}{1000}=0.003$ and vice-versa		Relate thousandths to tenths and hundredths,$\text { e.g. } \frac{70}{1000}=\frac{7}{100}=0.07, \frac{900}{1000}=\frac{9}{10}=0.9$		Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents

Identify acute and obtuse angles and compare and order angles up to two right angles by size

Use information given to calculate missing angles at a point on a straight line and half a turn (total 180°)

Use information given to calculate missing angles at a point and one whole turn (total 360°)

Identify angles that are other multiples of 90° e.g. when jumping a snowboarder rotates through one and a half turns. Through how many degrees has the snowboarder turned? Answer: 540° whole turn (total 360°) - angles at a point on a straight line and half a turn

	End of Year 4 expectation	Learning and Progression Statements								End of Year 5 expectation
	Describe positions on a 2-D grid as coordinates in the first quadrant	This is consolidation of Year 4 learning and therefore there are no steps towards this end of year expectation								Describe positions on the first quadrant of a coordinate grid
	Plot specified points and draw sides to complete a given polygon	This is consolidation of Year 4 learning and therefore there are no steps towards this end of year expectation								Plot specified points and complete shapes
	Describe movements between positions as translations of a given unit to the left/right and up/down	Identify, describe and represent the position of a rectilinear shape following a reflection in a horizontal or vertical mirror line when the shape has all sides parallel or perpendicular to the mirror line and is not touching the mirror line	Identify, describe and represent the position of a shape following a reflection in a horizontal or vertical mirror line when the shape has some sides that are not parallel or perpendicular to the mirror line and is not touching the mirror line		Identify, describe and represent the position of a shape following a reflection in a horizontal or vertical mirror line when the shape has no sides parallel or perpendicular to the mirror line and is not touching the mirror line	Identify, describe and represent the position of a rectilinear shape following a reflection in a horizontal or vertical mirror line when the shape has all sides parallel or perpendicular to the mirror line and is touching the mirror line	Identify, represent of a shape reflect horizontal mirror line shape has that are n or perpen the mirror touch mirro	scribe and e position ollowing a n in a or vertical when the ome sides t parallel dicular to ine and is g the line	Identify, describe and represent the position of a shape following a reflection in a horizontal or vertical mirror line when the shape has no sides parallel or perpendicular to the mirror line and is touching the mirror line	Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed
		Identify and represent the position of a shape following a translation in one direction (left/right or up/down)		Describe the translation for a shape that moves in one direction (left/right or up/down)		Identify and represent the position of a shape following a translation in two directions (left/right and up/down)		Describe the translation for a shape that moves in two directions (left/right and up/down)		

$\begin{aligned} & \mathscr{H} \\ & \stackrel{H}{H} \\ & \stackrel{H}{H} \end{aligned}$	End of Year 4 expectation	Learning and Progression Statements						End of Year 5 expectation
	Use a variety of sorting diagrams to compare and classify numbers and geometric shapes based on their properties and sizes	Interpret information in a variety of sorting diagrams		Complete a variety of sorting diagrams with given information		Identify the properties used to sort a set of numbers or shapes in a completed diagram		Complete and interpret information in a variety of sorting diagrams (including those used to sort properties of numbers and shapes)
	Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts, time graphs	Read and interpret information in a range of tables with different contexts	Complete tables by identifying missing information		Read and interpret information in a range of timetables with different contexts		Complete timetables by identifying missing information	Complete, read and interpret information in tables and timetables
	Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	Understand the purpose of different types of graph and identify which is best suited for a particular data set	Answer questions which ask 'How many/much more...?' or 'How many fewer/much less...?' when comparing two categories in a data set		Answer questions which ask 'How many in total....? for different data readings		Solve question where the answer has to be inferred from a given data set e.g. few ice creams were sold on Tuesday because it was raining	Solve comparison, sum and difference problems using information presented in all types of graph including a line graph
	No equivalent objective in Y 4	Calculate the mode of a set of values	Calculate the range of a set of values		Calculate the median for an odd number of values		Calculate the median for an even number of values	Calculate and interpret the mode, median and range
		Identify when it is appropriate to use mode, median and range						

Know area is a measure of surface within a given boundary Find the area of rectilinear shapes by counting squares	Use knowledge of arrays to understand why the area of rectangles can be calculated using length multiplied by width	Calculate the area of rectangles (see progression in mental and written multiplication)	Compare rectangles by area	Calculate and compare the area of rectangle, use standard units square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres (m^{2})
Read, write and convert time between analogue and digital 12- and 24-hour clocks	This is consolidation of Year 4 learning and therefore there are no steps towards this end of year expectation			Continue to read, write and convert time between analogue and digital 12 and 24-hour clocks
Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days and problems involving money and measures	Convert between different units of time using an appropriate strategy e.g. How many hours are there in a year? How many hours are there in a fortnight? How many full weeks is 337 days?			Solve problems involving converting between units of time
Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days and problems involving money and measures	Children need frequent access to a range of contexts using the content from all of the above.			Use all four operations to solve problems involving measure using decimal notation, including scaling

